gitea/vendor/github.com/RoaringBitmap/roaring/bitmapcontainer.go
6543 fdf750e4d4
[Vendor] blevesearch v0.8.1 -> v1.0.7 (#11360)
* Update blevesearch v0.8.1 -> v1.0.7

* make vendor

Co-authored-by: zeripath <art27@cantab.net>
2020-05-10 06:40:54 +01:00

1099 lines
26 KiB
Go

package roaring
import (
"fmt"
"unsafe"
)
//go:generate msgp -unexported
type bitmapContainer struct {
cardinality int
bitmap []uint64
}
func (bc bitmapContainer) String() string {
var s string
for it := bc.getShortIterator(); it.hasNext(); {
s += fmt.Sprintf("%v, ", it.next())
}
return s
}
func newBitmapContainer() *bitmapContainer {
p := new(bitmapContainer)
size := (1 << 16) / 64
p.bitmap = make([]uint64, size, size)
return p
}
func newBitmapContainerwithRange(firstOfRun, lastOfRun int) *bitmapContainer {
bc := newBitmapContainer()
bc.cardinality = lastOfRun - firstOfRun + 1
if bc.cardinality == maxCapacity {
fill(bc.bitmap, uint64(0xffffffffffffffff))
} else {
firstWord := firstOfRun / 64
lastWord := lastOfRun / 64
zeroPrefixLength := uint64(firstOfRun & 63)
zeroSuffixLength := uint64(63 - (lastOfRun & 63))
fillRange(bc.bitmap, firstWord, lastWord+1, uint64(0xffffffffffffffff))
bc.bitmap[firstWord] ^= ((uint64(1) << zeroPrefixLength) - 1)
blockOfOnes := (uint64(1) << zeroSuffixLength) - 1
maskOnLeft := blockOfOnes << (uint64(64) - zeroSuffixLength)
bc.bitmap[lastWord] ^= maskOnLeft
}
return bc
}
func (bc *bitmapContainer) minimum() uint16 {
for i := 0; i < len(bc.bitmap); i++ {
w := bc.bitmap[i]
if w != 0 {
r := countTrailingZeros(w)
return uint16(r + i*64)
}
}
return MaxUint16
}
// i should be non-zero
func clz(i uint64) int {
n := 1
x := uint32(i >> 32)
if x == 0 {
n += 32
x = uint32(i)
}
if x>>16 == 0 {
n += 16
x = x << 16
}
if x>>24 == 0 {
n += 8
x = x << 8
}
if x>>28 == 0 {
n += 4
x = x << 4
}
if x>>30 == 0 {
n += 2
x = x << 2
}
return n - int(x>>31)
}
func (bc *bitmapContainer) maximum() uint16 {
for i := len(bc.bitmap); i > 0; i-- {
w := bc.bitmap[i-1]
if w != 0 {
r := clz(w)
return uint16((i-1)*64 + 63 - r)
}
}
return uint16(0)
}
func (bc *bitmapContainer) iterate(cb func(x uint16) bool) bool {
iterator := bitmapContainerShortIterator{bc, bc.NextSetBit(0)}
for iterator.hasNext() {
if !cb(iterator.next()) {
return false
}
}
return true
}
type bitmapContainerShortIterator struct {
ptr *bitmapContainer
i int
}
func (bcsi *bitmapContainerShortIterator) next() uint16 {
j := bcsi.i
bcsi.i = bcsi.ptr.NextSetBit(bcsi.i + 1)
return uint16(j)
}
func (bcsi *bitmapContainerShortIterator) hasNext() bool {
return bcsi.i >= 0
}
func (bcsi *bitmapContainerShortIterator) peekNext() uint16 {
return uint16(bcsi.i)
}
func (bcsi *bitmapContainerShortIterator) advanceIfNeeded(minval uint16) {
if bcsi.hasNext() && bcsi.peekNext() < minval {
bcsi.i = bcsi.ptr.NextSetBit(int(minval))
}
}
func newBitmapContainerShortIterator(a *bitmapContainer) *bitmapContainerShortIterator {
return &bitmapContainerShortIterator{a, a.NextSetBit(0)}
}
func (bc *bitmapContainer) getShortIterator() shortPeekable {
return newBitmapContainerShortIterator(bc)
}
type reverseBitmapContainerShortIterator struct {
ptr *bitmapContainer
i int
}
func (bcsi *reverseBitmapContainerShortIterator) next() uint16 {
if bcsi.i == -1 {
panic("reverseBitmapContainerShortIterator.next() going beyond what is available")
}
j := bcsi.i
bcsi.i = bcsi.ptr.PrevSetBit(bcsi.i - 1)
return uint16(j)
}
func (bcsi *reverseBitmapContainerShortIterator) hasNext() bool {
return bcsi.i >= 0
}
func newReverseBitmapContainerShortIterator(a *bitmapContainer) *reverseBitmapContainerShortIterator {
if a.cardinality == 0 {
return &reverseBitmapContainerShortIterator{a, -1}
}
return &reverseBitmapContainerShortIterator{a, int(a.maximum())}
}
func (bc *bitmapContainer) getReverseIterator() shortIterable {
return newReverseBitmapContainerShortIterator(bc)
}
type bitmapContainerManyIterator struct {
ptr *bitmapContainer
base int
bitset uint64
}
func (bcmi *bitmapContainerManyIterator) nextMany(hs uint32, buf []uint32) int {
n := 0
base := bcmi.base
bitset := bcmi.bitset
for n < len(buf) {
if bitset == 0 {
base++
if base >= len(bcmi.ptr.bitmap) {
bcmi.base = base
bcmi.bitset = bitset
return n
}
bitset = bcmi.ptr.bitmap[base]
continue
}
t := bitset & -bitset
buf[n] = uint32(((base * 64) + int(popcount(t-1)))) | hs
n = n + 1
bitset ^= t
}
bcmi.base = base
bcmi.bitset = bitset
return n
}
func newBitmapContainerManyIterator(a *bitmapContainer) *bitmapContainerManyIterator {
return &bitmapContainerManyIterator{a, -1, 0}
}
func (bc *bitmapContainer) getManyIterator() manyIterable {
return newBitmapContainerManyIterator(bc)
}
func (bc *bitmapContainer) getSizeInBytes() int {
return len(bc.bitmap) * 8 // + bcBaseBytes
}
func (bc *bitmapContainer) serializedSizeInBytes() int {
//return bc.Msgsize()// NOO! This breaks GetSerializedSizeInBytes
return len(bc.bitmap) * 8
}
const bcBaseBytes = int(unsafe.Sizeof(bitmapContainer{}))
// bitmapContainer doesn't depend on card, always fully allocated
func bitmapContainerSizeInBytes() int {
return bcBaseBytes + (1<<16)/8
}
func bitmapEquals(a, b []uint64) bool {
if len(a) != len(b) {
return false
}
for i, v := range a {
if v != b[i] {
return false
}
}
return true
}
func (bc *bitmapContainer) fillLeastSignificant16bits(x []uint32, i int, mask uint32) {
// TODO: should be written as optimized assembly
pos := i
base := mask
for k := 0; k < len(bc.bitmap); k++ {
bitset := bc.bitmap[k]
for bitset != 0 {
t := bitset & -bitset
x[pos] = base + uint32(popcount(t-1))
pos++
bitset ^= t
}
base += 64
}
}
func (bc *bitmapContainer) equals(o container) bool {
srb, ok := o.(*bitmapContainer)
if ok {
if srb.cardinality != bc.cardinality {
return false
}
return bitmapEquals(bc.bitmap, srb.bitmap)
}
// use generic comparison
if bc.getCardinality() != o.getCardinality() {
return false
}
ait := o.getShortIterator()
bit := bc.getShortIterator()
for ait.hasNext() {
if bit.next() != ait.next() {
return false
}
}
return true
}
func (bc *bitmapContainer) iaddReturnMinimized(i uint16) container {
bc.iadd(i)
if bc.isFull() {
return newRunContainer16Range(0, MaxUint16)
}
return bc
}
func (bc *bitmapContainer) iadd(i uint16) bool {
x := int(i)
previous := bc.bitmap[x/64]
mask := uint64(1) << (uint(x) % 64)
newb := previous | mask
bc.bitmap[x/64] = newb
bc.cardinality += int((previous ^ newb) >> (uint(x) % 64))
return newb != previous
}
func (bc *bitmapContainer) iremoveReturnMinimized(i uint16) container {
if bc.iremove(i) {
if bc.cardinality == arrayDefaultMaxSize {
return bc.toArrayContainer()
}
}
return bc
}
// iremove returns true if i was found.
func (bc *bitmapContainer) iremove(i uint16) bool {
if bc.contains(i) {
bc.cardinality--
bc.bitmap[i/64] &^= (uint64(1) << (i % 64))
return true
}
return false
}
func (bc *bitmapContainer) isFull() bool {
return bc.cardinality == int(MaxUint16)+1
}
func (bc *bitmapContainer) getCardinality() int {
return bc.cardinality
}
func (bc *bitmapContainer) clone() container {
ptr := bitmapContainer{bc.cardinality, make([]uint64, len(bc.bitmap))}
copy(ptr.bitmap, bc.bitmap[:])
return &ptr
}
// add all values in range [firstOfRange,lastOfRange)
func (bc *bitmapContainer) iaddRange(firstOfRange, lastOfRange int) container {
bc.cardinality += setBitmapRangeAndCardinalityChange(bc.bitmap, firstOfRange, lastOfRange)
return bc
}
// remove all values in range [firstOfRange,lastOfRange)
func (bc *bitmapContainer) iremoveRange(firstOfRange, lastOfRange int) container {
bc.cardinality += resetBitmapRangeAndCardinalityChange(bc.bitmap, firstOfRange, lastOfRange)
if bc.getCardinality() <= arrayDefaultMaxSize {
return bc.toArrayContainer()
}
return bc
}
// flip all values in range [firstOfRange,endx)
func (bc *bitmapContainer) inot(firstOfRange, endx int) container {
if endx-firstOfRange == maxCapacity {
flipBitmapRange(bc.bitmap, firstOfRange, endx)
bc.cardinality = maxCapacity - bc.cardinality
} else if endx-firstOfRange > maxCapacity/2 {
flipBitmapRange(bc.bitmap, firstOfRange, endx)
bc.computeCardinality()
} else {
bc.cardinality += flipBitmapRangeAndCardinalityChange(bc.bitmap, firstOfRange, endx)
}
if bc.getCardinality() <= arrayDefaultMaxSize {
return bc.toArrayContainer()
}
return bc
}
// flip all values in range [firstOfRange,endx)
func (bc *bitmapContainer) not(firstOfRange, endx int) container {
answer := bc.clone()
return answer.inot(firstOfRange, endx)
}
func (bc *bitmapContainer) or(a container) container {
switch x := a.(type) {
case *arrayContainer:
return bc.orArray(x)
case *bitmapContainer:
return bc.orBitmap(x)
case *runContainer16:
if x.isFull() {
return x.clone()
}
return x.orBitmapContainer(bc)
}
panic("unsupported container type")
}
func (bc *bitmapContainer) orCardinality(a container) int {
switch x := a.(type) {
case *arrayContainer:
return bc.orArrayCardinality(x)
case *bitmapContainer:
return bc.orBitmapCardinality(x)
case *runContainer16:
return x.orBitmapContainerCardinality(bc)
}
panic("unsupported container type")
}
func (bc *bitmapContainer) ior(a container) container {
switch x := a.(type) {
case *arrayContainer:
return bc.iorArray(x)
case *bitmapContainer:
return bc.iorBitmap(x)
case *runContainer16:
if x.isFull() {
return x.clone()
}
for i := range x.iv {
bc.iaddRange(int(x.iv[i].start), int(x.iv[i].last())+1)
}
if bc.isFull() {
return newRunContainer16Range(0, MaxUint16)
}
//bc.computeCardinality()
return bc
}
panic(fmt.Errorf("unsupported container type %T", a))
}
func (bc *bitmapContainer) lazyIOR(a container) container {
switch x := a.(type) {
case *arrayContainer:
return bc.lazyIORArray(x)
case *bitmapContainer:
return bc.lazyIORBitmap(x)
case *runContainer16:
if x.isFull() {
return x.clone()
}
// Manually inlined setBitmapRange function
bitmap := bc.bitmap
for _, iv := range x.iv {
start := int(iv.start)
end := int(iv.last()) + 1
if start >= end {
continue
}
firstword := start / 64
endword := (end - 1) / 64
if firstword == endword {
bitmap[firstword] |= (^uint64(0) << uint(start%64)) & (^uint64(0) >> (uint(-end) % 64))
continue
}
bitmap[firstword] |= ^uint64(0) << uint(start%64)
for i := firstword + 1; i < endword; i++ {
bitmap[i] = ^uint64(0)
}
bitmap[endword] |= ^uint64(0) >> (uint(-end) % 64)
}
bc.cardinality = invalidCardinality
return bc
}
panic("unsupported container type")
}
func (bc *bitmapContainer) lazyOR(a container) container {
switch x := a.(type) {
case *arrayContainer:
return bc.lazyORArray(x)
case *bitmapContainer:
return bc.lazyORBitmap(x)
case *runContainer16:
if x.isFull() {
return x.clone()
}
// TODO: implement lazy OR
return x.orBitmapContainer(bc)
}
panic("unsupported container type")
}
func (bc *bitmapContainer) orArray(value2 *arrayContainer) container {
answer := bc.clone().(*bitmapContainer)
c := value2.getCardinality()
for k := 0; k < c; k++ {
v := value2.content[k]
i := uint(v) >> 6
bef := answer.bitmap[i]
aft := bef | (uint64(1) << (v % 64))
answer.bitmap[i] = aft
answer.cardinality += int((bef - aft) >> 63)
}
return answer
}
func (bc *bitmapContainer) orArrayCardinality(value2 *arrayContainer) int {
answer := 0
c := value2.getCardinality()
for k := 0; k < c; k++ {
// branchless:
v := value2.content[k]
i := uint(v) >> 6
bef := bc.bitmap[i]
aft := bef | (uint64(1) << (v % 64))
answer += int((bef - aft) >> 63)
}
return answer
}
func (bc *bitmapContainer) orBitmap(value2 *bitmapContainer) container {
answer := newBitmapContainer()
for k := 0; k < len(answer.bitmap); k++ {
answer.bitmap[k] = bc.bitmap[k] | value2.bitmap[k]
}
answer.computeCardinality()
if answer.isFull() {
return newRunContainer16Range(0, MaxUint16)
}
return answer
}
func (bc *bitmapContainer) orBitmapCardinality(value2 *bitmapContainer) int {
return int(popcntOrSlice(bc.bitmap, value2.bitmap))
}
func (bc *bitmapContainer) andBitmapCardinality(value2 *bitmapContainer) int {
return int(popcntAndSlice(bc.bitmap, value2.bitmap))
}
func (bc *bitmapContainer) computeCardinality() {
bc.cardinality = int(popcntSlice(bc.bitmap))
}
func (bc *bitmapContainer) iorArray(ac *arrayContainer) container {
for k := range ac.content {
vc := ac.content[k]
i := uint(vc) >> 6
bef := bc.bitmap[i]
aft := bef | (uint64(1) << (vc % 64))
bc.bitmap[i] = aft
bc.cardinality += int((bef - aft) >> 63)
}
if bc.isFull() {
return newRunContainer16Range(0, MaxUint16)
}
return bc
}
func (bc *bitmapContainer) iorBitmap(value2 *bitmapContainer) container {
answer := bc
answer.cardinality = 0
for k := 0; k < len(answer.bitmap); k++ {
answer.bitmap[k] = bc.bitmap[k] | value2.bitmap[k]
}
answer.computeCardinality()
if bc.isFull() {
return newRunContainer16Range(0, MaxUint16)
}
return answer
}
func (bc *bitmapContainer) lazyIORArray(value2 *arrayContainer) container {
answer := bc
c := value2.getCardinality()
for k := 0; k+3 < c; k += 4 {
content := (*[4]uint16)(unsafe.Pointer(&value2.content[k]))
vc0 := content[0]
i0 := uint(vc0) >> 6
answer.bitmap[i0] = answer.bitmap[i0] | (uint64(1) << (vc0 % 64))
vc1 := content[1]
i1 := uint(vc1) >> 6
answer.bitmap[i1] = answer.bitmap[i1] | (uint64(1) << (vc1 % 64))
vc2 := content[2]
i2 := uint(vc2) >> 6
answer.bitmap[i2] = answer.bitmap[i2] | (uint64(1) << (vc2 % 64))
vc3 := content[3]
i3 := uint(vc3) >> 6
answer.bitmap[i3] = answer.bitmap[i3] | (uint64(1) << (vc3 % 64))
}
for k := c &^ 3; k < c; k++ {
vc := value2.content[k]
i := uint(vc) >> 6
answer.bitmap[i] = answer.bitmap[i] | (uint64(1) << (vc % 64))
}
answer.cardinality = invalidCardinality
return answer
}
func (bc *bitmapContainer) lazyORArray(value2 *arrayContainer) container {
answer := bc.clone().(*bitmapContainer)
return answer.lazyIORArray(value2)
}
func (bc *bitmapContainer) lazyIORBitmap(value2 *bitmapContainer) container {
answer := bc
for k := 0; k < len(answer.bitmap); k++ {
answer.bitmap[k] = bc.bitmap[k] | value2.bitmap[k]
}
bc.cardinality = invalidCardinality
return answer
}
func (bc *bitmapContainer) lazyORBitmap(value2 *bitmapContainer) container {
answer := bc.clone().(*bitmapContainer)
return answer.lazyIORBitmap(value2)
}
func (bc *bitmapContainer) xor(a container) container {
switch x := a.(type) {
case *arrayContainer:
return bc.xorArray(x)
case *bitmapContainer:
return bc.xorBitmap(x)
case *runContainer16:
return x.xorBitmap(bc)
}
panic("unsupported container type")
}
func (bc *bitmapContainer) xorArray(value2 *arrayContainer) container {
answer := bc.clone().(*bitmapContainer)
c := value2.getCardinality()
for k := 0; k < c; k++ {
vc := value2.content[k]
index := uint(vc) >> 6
abi := answer.bitmap[index]
mask := uint64(1) << (vc % 64)
answer.cardinality += 1 - 2*int((abi&mask)>>(vc%64))
answer.bitmap[index] = abi ^ mask
}
if answer.cardinality <= arrayDefaultMaxSize {
return answer.toArrayContainer()
}
return answer
}
func (bc *bitmapContainer) rank(x uint16) int {
// TODO: rewrite in assembly
leftover := (uint(x) + 1) & 63
if leftover == 0 {
return int(popcntSlice(bc.bitmap[:(uint(x)+1)/64]))
}
return int(popcntSlice(bc.bitmap[:(uint(x)+1)/64]) + popcount(bc.bitmap[(uint(x)+1)/64]<<(64-leftover)))
}
func (bc *bitmapContainer) selectInt(x uint16) int {
remaining := x
for k := 0; k < len(bc.bitmap); k++ {
w := popcount(bc.bitmap[k])
if uint16(w) > remaining {
return k*64 + selectBitPosition(bc.bitmap[k], int(remaining))
}
remaining -= uint16(w)
}
return -1
}
func (bc *bitmapContainer) xorBitmap(value2 *bitmapContainer) container {
newCardinality := int(popcntXorSlice(bc.bitmap, value2.bitmap))
if newCardinality > arrayDefaultMaxSize {
answer := newBitmapContainer()
for k := 0; k < len(answer.bitmap); k++ {
answer.bitmap[k] = bc.bitmap[k] ^ value2.bitmap[k]
}
answer.cardinality = newCardinality
if answer.isFull() {
return newRunContainer16Range(0, MaxUint16)
}
return answer
}
ac := newArrayContainerSize(newCardinality)
fillArrayXOR(ac.content, bc.bitmap, value2.bitmap)
ac.content = ac.content[:newCardinality]
return ac
}
func (bc *bitmapContainer) and(a container) container {
switch x := a.(type) {
case *arrayContainer:
return bc.andArray(x)
case *bitmapContainer:
return bc.andBitmap(x)
case *runContainer16:
if x.isFull() {
return bc.clone()
}
return x.andBitmapContainer(bc)
}
panic("unsupported container type")
}
func (bc *bitmapContainer) andCardinality(a container) int {
switch x := a.(type) {
case *arrayContainer:
return bc.andArrayCardinality(x)
case *bitmapContainer:
return bc.andBitmapCardinality(x)
case *runContainer16:
return x.andBitmapContainerCardinality(bc)
}
panic("unsupported container type")
}
func (bc *bitmapContainer) intersects(a container) bool {
switch x := a.(type) {
case *arrayContainer:
return bc.intersectsArray(x)
case *bitmapContainer:
return bc.intersectsBitmap(x)
case *runContainer16:
return x.intersects(bc)
}
panic("unsupported container type")
}
func (bc *bitmapContainer) iand(a container) container {
switch x := a.(type) {
case *arrayContainer:
return bc.iandArray(x)
case *bitmapContainer:
return bc.iandBitmap(x)
case *runContainer16:
if x.isFull() {
return bc.clone()
}
return bc.iandRun16(x)
}
panic("unsupported container type")
}
func (bc *bitmapContainer) iandRun16(rc *runContainer16) container {
rcb := newBitmapContainerFromRun(rc)
return bc.iandBitmap(rcb)
}
func (bc *bitmapContainer) iandArray(ac *arrayContainer) container {
acb := ac.toBitmapContainer()
return bc.iandBitmap(acb)
}
func (bc *bitmapContainer) andArray(value2 *arrayContainer) *arrayContainer {
answer := newArrayContainerCapacity(len(value2.content))
answer.content = answer.content[:cap(answer.content)]
c := value2.getCardinality()
pos := 0
for k := 0; k < c; k++ {
v := value2.content[k]
answer.content[pos] = v
pos += int(bc.bitValue(v))
}
answer.content = answer.content[:pos]
return answer
}
func (bc *bitmapContainer) andArrayCardinality(value2 *arrayContainer) int {
c := value2.getCardinality()
pos := 0
for k := 0; k < c; k++ {
v := value2.content[k]
pos += int(bc.bitValue(v))
}
return pos
}
func (bc *bitmapContainer) getCardinalityInRange(start, end uint) int {
if start >= end {
return 0
}
firstword := start / 64
endword := (end - 1) / 64
const allones = ^uint64(0)
if firstword == endword {
return int(popcount(bc.bitmap[firstword] & ((allones << (start % 64)) & (allones >> ((64 - end) & 63)))))
}
answer := popcount(bc.bitmap[firstword] & (allones << (start % 64)))
answer += popcntSlice(bc.bitmap[firstword+1 : endword])
answer += popcount(bc.bitmap[endword] & (allones >> ((64 - end) & 63)))
return int(answer)
}
func (bc *bitmapContainer) andBitmap(value2 *bitmapContainer) container {
newcardinality := int(popcntAndSlice(bc.bitmap, value2.bitmap))
if newcardinality > arrayDefaultMaxSize {
answer := newBitmapContainer()
for k := 0; k < len(answer.bitmap); k++ {
answer.bitmap[k] = bc.bitmap[k] & value2.bitmap[k]
}
answer.cardinality = newcardinality
return answer
}
ac := newArrayContainerSize(newcardinality)
fillArrayAND(ac.content, bc.bitmap, value2.bitmap)
ac.content = ac.content[:newcardinality] //not sure why i need this
return ac
}
func (bc *bitmapContainer) intersectsArray(value2 *arrayContainer) bool {
c := value2.getCardinality()
for k := 0; k < c; k++ {
v := value2.content[k]
if bc.contains(v) {
return true
}
}
return false
}
func (bc *bitmapContainer) intersectsBitmap(value2 *bitmapContainer) bool {
for k := 0; k < len(bc.bitmap); k++ {
if (bc.bitmap[k] & value2.bitmap[k]) != 0 {
return true
}
}
return false
}
func (bc *bitmapContainer) iandBitmap(value2 *bitmapContainer) container {
newcardinality := int(popcntAndSlice(bc.bitmap, value2.bitmap))
for k := 0; k < len(bc.bitmap); k++ {
bc.bitmap[k] = bc.bitmap[k] & value2.bitmap[k]
}
bc.cardinality = newcardinality
if newcardinality <= arrayDefaultMaxSize {
return newArrayContainerFromBitmap(bc)
}
return bc
}
func (bc *bitmapContainer) andNot(a container) container {
switch x := a.(type) {
case *arrayContainer:
return bc.andNotArray(x)
case *bitmapContainer:
return bc.andNotBitmap(x)
case *runContainer16:
return bc.andNotRun16(x)
}
panic("unsupported container type")
}
func (bc *bitmapContainer) andNotRun16(rc *runContainer16) container {
rcb := rc.toBitmapContainer()
return bc.andNotBitmap(rcb)
}
func (bc *bitmapContainer) iandNot(a container) container {
switch x := a.(type) {
case *arrayContainer:
return bc.iandNotArray(x)
case *bitmapContainer:
return bc.iandNotBitmapSurely(x)
case *runContainer16:
return bc.iandNotRun16(x)
}
panic("unsupported container type")
}
func (bc *bitmapContainer) iandNotArray(ac *arrayContainer) container {
acb := ac.toBitmapContainer()
return bc.iandNotBitmapSurely(acb)
}
func (bc *bitmapContainer) iandNotRun16(rc *runContainer16) container {
rcb := rc.toBitmapContainer()
return bc.iandNotBitmapSurely(rcb)
}
func (bc *bitmapContainer) andNotArray(value2 *arrayContainer) container {
answer := bc.clone().(*bitmapContainer)
c := value2.getCardinality()
for k := 0; k < c; k++ {
vc := value2.content[k]
i := uint(vc) >> 6
oldv := answer.bitmap[i]
newv := oldv &^ (uint64(1) << (vc % 64))
answer.bitmap[i] = newv
answer.cardinality -= int((oldv ^ newv) >> (vc % 64))
}
if answer.cardinality <= arrayDefaultMaxSize {
return answer.toArrayContainer()
}
return answer
}
func (bc *bitmapContainer) andNotBitmap(value2 *bitmapContainer) container {
newCardinality := int(popcntMaskSlice(bc.bitmap, value2.bitmap))
if newCardinality > arrayDefaultMaxSize {
answer := newBitmapContainer()
for k := 0; k < len(answer.bitmap); k++ {
answer.bitmap[k] = bc.bitmap[k] &^ value2.bitmap[k]
}
answer.cardinality = newCardinality
return answer
}
ac := newArrayContainerSize(newCardinality)
fillArrayANDNOT(ac.content, bc.bitmap, value2.bitmap)
return ac
}
func (bc *bitmapContainer) iandNotBitmapSurely(value2 *bitmapContainer) container {
newCardinality := int(popcntMaskSlice(bc.bitmap, value2.bitmap))
for k := 0; k < len(bc.bitmap); k++ {
bc.bitmap[k] = bc.bitmap[k] &^ value2.bitmap[k]
}
bc.cardinality = newCardinality
if bc.getCardinality() <= arrayDefaultMaxSize {
return bc.toArrayContainer()
}
return bc
}
func (bc *bitmapContainer) contains(i uint16) bool { //testbit
x := uint(i)
w := bc.bitmap[x>>6]
mask := uint64(1) << (x & 63)
return (w & mask) != 0
}
func (bc *bitmapContainer) bitValue(i uint16) uint64 {
x := uint(i)
w := bc.bitmap[x>>6]
return (w >> (x & 63)) & 1
}
func (bc *bitmapContainer) loadData(arrayContainer *arrayContainer) {
bc.cardinality = arrayContainer.getCardinality()
c := arrayContainer.getCardinality()
for k := 0; k < c; k++ {
x := arrayContainer.content[k]
i := int(x) / 64
bc.bitmap[i] |= (uint64(1) << uint(x%64))
}
}
func (bc *bitmapContainer) toArrayContainer() *arrayContainer {
ac := &arrayContainer{}
ac.loadData(bc)
return ac
}
func (bc *bitmapContainer) fillArray(container []uint16) {
//TODO: rewrite in assembly
pos := 0
base := 0
for k := 0; k < len(bc.bitmap); k++ {
bitset := bc.bitmap[k]
for bitset != 0 {
t := bitset & -bitset
container[pos] = uint16((base + int(popcount(t-1))))
pos = pos + 1
bitset ^= t
}
base += 64
}
}
func (bc *bitmapContainer) NextSetBit(i int) int {
x := i / 64
if x >= len(bc.bitmap) {
return -1
}
w := bc.bitmap[x]
w = w >> uint(i%64)
if w != 0 {
return i + countTrailingZeros(w)
}
x++
for ; x < len(bc.bitmap); x++ {
if bc.bitmap[x] != 0 {
return (x * 64) + countTrailingZeros(bc.bitmap[x])
}
}
return -1
}
func (bc *bitmapContainer) PrevSetBit(i int) int {
if i < 0 {
return -1
}
x := i / 64
if x >= len(bc.bitmap) {
return -1
}
w := bc.bitmap[x]
b := i % 64
w = w << uint(63-b)
if w != 0 {
return i - countLeadingZeros(w)
}
x--
for ; x >= 0; x-- {
if bc.bitmap[x] != 0 {
return (x * 64) + 63 - countLeadingZeros(bc.bitmap[x])
}
}
return -1
}
// reference the java implementation
// https://github.com/RoaringBitmap/RoaringBitmap/blob/master/src/main/java/org/roaringbitmap/BitmapContainer.java#L875-L892
//
func (bc *bitmapContainer) numberOfRuns() int {
if bc.cardinality == 0 {
return 0
}
var numRuns uint64
nextWord := bc.bitmap[0]
for i := 0; i < len(bc.bitmap)-1; i++ {
word := nextWord
nextWord = bc.bitmap[i+1]
numRuns += popcount((^word)&(word<<1)) + ((word >> 63) &^ nextWord)
}
word := nextWord
numRuns += popcount((^word) & (word << 1))
if (word & 0x8000000000000000) != 0 {
numRuns++
}
return int(numRuns)
}
// convert to run or array *if needed*
func (bc *bitmapContainer) toEfficientContainer() container {
numRuns := bc.numberOfRuns()
sizeAsRunContainer := runContainer16SerializedSizeInBytes(numRuns)
sizeAsBitmapContainer := bitmapContainerSizeInBytes()
card := bc.getCardinality()
sizeAsArrayContainer := arrayContainerSizeInBytes(card)
if sizeAsRunContainer <= minOfInt(sizeAsBitmapContainer, sizeAsArrayContainer) {
return newRunContainer16FromBitmapContainer(bc)
}
if card <= arrayDefaultMaxSize {
return bc.toArrayContainer()
}
return bc
}
func newBitmapContainerFromRun(rc *runContainer16) *bitmapContainer {
if len(rc.iv) == 1 {
return newBitmapContainerwithRange(int(rc.iv[0].start), int(rc.iv[0].last()))
}
bc := newBitmapContainer()
for i := range rc.iv {
setBitmapRange(bc.bitmap, int(rc.iv[i].start), int(rc.iv[i].last())+1)
bc.cardinality += int(rc.iv[i].last()) + 1 - int(rc.iv[i].start)
}
//bc.computeCardinality()
return bc
}
func (bc *bitmapContainer) containerType() contype {
return bitmapContype
}
func (bc *bitmapContainer) addOffset(x uint16) []container {
low := newBitmapContainer()
high := newBitmapContainer()
b := uint32(x) >> 6
i := uint32(x) % 64
end := uint32(1024) - b
if i == 0 {
copy(low.bitmap[b:], bc.bitmap[:end])
copy(high.bitmap[:b], bc.bitmap[end:])
} else {
low.bitmap[b] = bc.bitmap[0] << i
for k := uint32(1); k < end; k++ {
newval := bc.bitmap[k] << i
if newval == 0 {
newval = bc.bitmap[k-1] >> (64 - i)
}
low.bitmap[b+k] = newval
}
for k := end; k < 1024; k++ {
newval := bc.bitmap[k] << i
if newval == 0 {
newval = bc.bitmap[k-1] >> (64 - i)
}
high.bitmap[k-end] = newval
}
high.bitmap[b] = bc.bitmap[1023] >> (64 - i)
}
low.computeCardinality()
high.computeCardinality()
return []container{low, high}
}